Rancangan Eksperimen Acak

T. Dicky Hastjarjo

Fakultas Psikologi Universitas Gadjah Mada

Pengantar

Rancangan eksperimen oleh McGuigan (1987) secara umum diartikan sebagai penerapan metode ilmiah yang diawali dengan merumuskan permasalahan, dilanjutkan dengan merumuskan hipotesis, menyeleksi partisipan, menempatkan partisipan ke kelompok eksperimen dan kontrol, menentukan variabel independen dan dependen, mengendalikan variabel luar yang relevan, melakukan analisa statistik, membuat generalisasi dan penelusuran hipotesis jika terkonfirmasi, serta diakhiri dengan memprediksi terhadap situasi baru lewat replikasi. Rumusan rancangan eksperimen versi McGuigan ini merupakan rumusan yang luas sebab hal-hal diatas merupakan penerapan tahapan seseorang didalam menyusun penelitian. Pengertian rancangan eksperimen secara lebih sempit dikemukakan oleh Kirk (1982) sebagai cara bagaimana sebuah eksperimen dilakukan dengan mengacu pada lima hal yang saling berkaitan, yakni: (a) perumusan hipotesis statistik, (b) penentuan variabel independen dan variabel pengganggu (nuisance variable), (c) spesifikasi jumlah unit eksperimen, (d) spesifikasi prosedur penempatan kondisi eksperimen ke subjek, dan (e) penentuan pengukuran variabel tergantung beserta analisis statistik. Sementara itu secara lebih sempit lagi Myers dan Hansen (2002) merumuskan rancangan eksperimen seba-

gai struktur umum sebuah eksperimen, yang ditentukan oleh tiga aspek (a) jumlah variabel independen atau perlakuan, (b) jumlah variasi variabel independen atau kondisi perlakuan, dan (c) penggunaan subjek yang sama atau berbeda untuk masing-masing kondisi perlakuan.

1 Korespondensi mengenai artikel ini dapat melalui: dickybh@ugm.ac.id
Gambar 1. Bagan metode penelitian psikologi

Logika metode penelitian eksperimen

Kerlinger dan Lee (2000) berpendapat bahwa meskipun metode eksperimen dengan metode noneksperimen berbeda namun kedua metode tersebut mempunyai tujuan dasar dan logika ilmiah yang sama. Tujuan dasar metode eksperimen dan non-eksperimen adalah mempelajari hubungan antara dua variabel atau lebih. Logika ilmiah kedua metode itu adalah menyediakan bukti empiris sehubungan dengan pernyataan kondisional yang berbentuk “Jika p maka q”. Kerlinger (1986) memberi contoh untuk penelitian yang melibatkan dua variabel “Jika frustrasi (p) maka berperilaku agresif (q)” serta untuk penelitian dengan beberapa variabel “Jika inteligensi tinggi (p₁), kelas menengah (p₂), lelaki (p₃), dan frustrasi
Meskupin kedua metode penelitian mempunyai logika dasar yang sama, yaitu mencari hubungan antara variabel, namun metode eksperimen mencari hubungan yang lebih khusus: hubungan kausal (cause-effect, causal relationship, causality) antara sebuah variabel atau beberapa variabel dengan variabel lain. Hubungan yang diteliti oleh metode eksperimen dalam psikologi adalah hubungan kausal atau hubungan sebab dengan akibat/efek. Logika dasar metode eksperimen yang tergamar dalam pernyataan kondisional "jika p maka q" menunjukkan bahwa p adalah sebab dan q adalah efek/akibat. Istilah metodologinya p adalah anteceden atau variabel independen yang dimanipulasi atau perlakuan, sedangkan q adalah variabel dependen atau dampak (outcome) dari perlakuan atau konsekuensi dari adanya manipulasi variabel independen. Sebuah eksperimen adalah sebuah penelitian sistematik dimana peneliti secara langsung membuat variasi sebuah atau beberapa faktor, membuat konstan faktor-faktor lain, dan mengamati akibat dari variasi tersebut (Goodwin, 2010). Variabel independen seringkali disebut faktor. Faktor yang secara sengaja dibuat variasinya oleh peneliti itu adalah variabel independen, variabel yang dibuat konstan adalah variabel luar (extraneous variable) sedangkkan perlakuan yang diukur sebagai akibat variasi variabel independen itu adalah variabel dependen. Jadi dapat disimpulkan bahwa sebuah eksperimen akan memunculkan variasi variabel independen, mengendalikan variabel luar, serta mengukur variabel dependen sebagai akibat adanya variasi variabel independen.

men adalah mengidentifikasikan variabel pencemar yang ada pada penelitian tertentu.

Notasi rancangan

Tidak semua buku eksperimen atau metode penelitian menyediakan notasi rancangan eksperimen (Kantowitz, Roediger & Elmes, 2008; Keppel & Wickens, 2004; McGuigan, 1997; Myers & Hansen, 2002; Sani & Todman, 2006; Solso, Johnson & Beal, 1998), hanya buku warisan tradisi Campbell (Campbell & Stanley, 1963; Cook & Campbell, 1979; Shadish, Cook dan Campbell (2002) yang menyediakan notasi rancangan eksperimen. Tulisan ini mengikuti notasi Shadish dkk (2002) dengan memakai (a) huruf X untuk menunjukkan perlakuan, (b) huruf O sebagai pengukuran variabel dependen. Tanda O₁ menunjukkan pengukuran variabel dependen untuk pertamakali (biasanya disebut pretes/pengukuran praperlakuan meskipun tidak selalu begitu), dan O₂ untuk pengukuran pasca perlakuan. (c) huruf R singkatan dari Random Assignment/penempatan secara acak subjek kedalam kelompok-kelompok eksperimen serta garis lurus yang memisahkan kelompok-kelompok eksperimen menggambarkan kelompok tersebut terbentuk secara acak, (d) Kelompok kontrol tanpa perlakuan tidak diberi huruf X. Tulisan ini juga mengikuti notasi Kirk (1982) menge- nai huruf A sebagai perlakuan atau variabel independen dan a₁, a₂ serta a dengan nomer berikutnya sebagai kondisi perlakuan atau variasi variabel independen. Jadi sebagai rangkuman misalnya penelitian eksperimen mengenai pengaruh strategi belajar peta pemikiran (mind map) terhadap prestasi belajar matematika pascaperlakuan pada 20 siswa dikelompok peta pemikiran dan 20 siswa dikelompok kontrol yang terpilih secara acak, maka dapat digambarkan sebagai:

<table>
<thead>
<tr>
<th>R</th>
<th>X₁</th>
<th>O₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>X₂</td>
<td>O₂</td>
</tr>
</tbody>
</table>

Gambar 2. Rancangan dua kelompok hanya dengan pengukuran pascaperlakuan

Keterangan: R dan garis lurus pemi-

sah antara kelompok eksperimen dan kontrol menunjukkan bahwa penempatan

40 subjek kedalam kelompok peta konsep

(20 siswa) dan kelompok kontrol (20 siswa) dilakukan secara acak. Huruf X

menunjuk pada kondisi perlakuan peta

pemikiran sedang kondisi kelompok kon-

tral adalah kelompok tanpa X. Pada kasus ini notasi O₁ untuk menunjukkan

pengukuran pascaperlakuan kelompok

eksperimen satu dan O₂ untuk menunjuk-

kan pengukuran pascaperlakuan kelomp-

ok eksperimen kedua dalam rancangan

yang sama juga. Hal ini dibuat agar

peneliti dapat lebih mudah membedakan

antara efek ketika ada perlakuan (O₁) dan ketika tidak ada perlakuan (O₂).

Seandainya eksperimen diatas dielab-

borasi dengan meneliti mengenai penga-

ruh strategi belajar yang terdiri dari peta

konsep (concept map) dan peta pemikiran

(mind map) terhadap prestasi belajar mate-

matika yang diukur baik praperlakuan

dan pascaperlakuan pada 20 siswa dikel-

ompok peta konsep dan 20 orang dikel-

ompok peta pemikiran yang terpilih se-

ra acak, maka dapat digambarkan sebagai:

<table>
<thead>
<tr>
<th>R</th>
<th>O₁</th>
<th>X₁</th>
<th>O₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>O₂</td>
<td>X₂</td>
<td>O₂</td>
</tr>
</tbody>
</table>

Gambar 3. Rancangan dua kelompok dengan pengukuran praperlakuan dan pascaperlakuan
Keterangan: Huruf R dan garis lurus pemisah antara dua kelompok eksperimen menunjukkan bahwa penempatan 40 subjek kedalam kelompok peta konsep (20 siswa) dan kelompok peta pemikiran (20 siswa) dilakukan secara acak. Huruf X menjuk pada kondisi perlakuan peta konsep sedangkan X menunjuk pada kondisi perlakuan peta pemikiran. Huruf O menunjuk pada pengukuran prestasi belajar matematika praperlakuan dan O menunjuk pada pengukuran prestasi belajar matematika pascaperlakuan.

Seandainya eksperimen diatas dilaborasi lagi dengan membagi subjek secara acak menjadi tiga yaitu kelompok yaitu kelompok peta konsep (a), kelompok peta pemikiran (a) dan kelompok kontrol yang tidak diberi perlakuan apapun, maka rancangan eksperimen dapat digambarkan sebagai berikut:

\[
\begin{array}{cccccc}
R & 0i & X & a & 02 \\
R & 0i & X & a & 02 \\
R & 0i & 02
\end{array}
\]

Gambar 4. Rancangan kelompok jamak dengan pengukuran praperlakuan dan pascaperlakuan

Jenis rancangan

Seperti telah disebutkan di awal tulisan ini, Myers dan Hansen (2002) merumuskan rancangan eksperimen sebagai struktur umum sebuah eksperimen, yang ditentukan oleh tiga aspek yaitu; (a) jumlah variabel independen atau perlakuan, (b) jumlah variasi independen variabel atau kondisi perlakuan, dan (c) penggunaan subjek yang sama atau berbeda untuk masing-masing kondisi perlakuan. Dengan mengacu pada ketiga aspek tadi rancangan eksperimen secara umum dapat diklasifikasikan kedalam; (a) rancangan beda-subjek (between-subjects designs), yakni rancangan eksperimen yang melibatkan kelompok orang yang berbeda dalam masing-masing kondisi perlakuan, (b) rancangan sama subjek (within-subjects design), yakni rancangan yang melibatkan subjek yang sama dalam semua kondisi perlakuan, serta (c) rancangan campuran (mixed design) adalah sebuah rancangan eksperimen yang mengkombinasikan rancangan beda-subjek dengan rancangan sama subjek.

Rancangan beda-subjek (between-subjects designs)

Rancangan beda-subjek oleh Solso, Johnson, dan Beal (1998) maupun oleh McGuigan (1997) disebut sebagai rancangan beda-kelompok (between-groups design). Rancangan beda-subjek (between-subjects designs) adalah rancangan eksperimen yang melibatkan kelompok orang yang berbeda dalam masing-masing kondisi perlakuan dan dapat dibagi lagi menjadi; (a) rancangan eksperimen yang hanya meneliti pengaruh satu variabel independen atau perlakuan atau faktor, dan (b) rancangan eksperimen yang meneliti lebih dari satu variabel independen atau perlakuan atau faktor disebut sebagai rancangan faktorial (factorial design). Rancangan eksperimen yang hanya meneliti pengaruh satu variabel independen atas dasar jumlah kelompok kondisi perlakuan dapat digolongkan menjadi dua, yaitu; (a) rancangan dua kelompok dan (b) rancangan kelompok majemuk. Rancangan eksperimen dua kelompok berdasarkan cara pembentukannya dapat digolongkan menjadi dua yakni; (a) dua kelompok independen (two independent groups) yang terbentuk dengan cara penempatan subjek keda- lam dua kondisi perlakuan secara acak (random assignment) dan (b) dua kelompok cocok-sebanding (two matched groups), yang melibatkan penempatan subjek kedalam.
dua kondisi perlakuan berdasar kecocokan dalam satu variabel lain tertentu yang diduga ikut berpengaruh terhadap variabel dependen.

Rancangan beda-subjek yang meneliti satu variabel independen dengan dua kelompok independen diuraikan berikut. Dua kelompok independen tersebut dapat terbentuk dari; (a) satu kelompok eksperimen yang mendapatkan perlakuan, dan satu kelompok kontrol yang tidak mendapatkan perlakuan atau (b) kedua kelompok mendapatkan variasi variabel independen berbeda. Sebuah eksperimen yang memiliki satu kelompok eksperimen dan satu kelompok kontrol kontohnya adalah penelitian Utomo (2007) mengenai pengaruh emosi positif terhadap performansi memori jangka pendek. Variabel independen adalah emosi positif yang dimanipulasi dengan cara subjek diminta menggambarkan pengalaman yang membaik dengan atau menyenangkan serta kemudian diminta membayangkannya kembali pengalaman bahagia tersebut. Variabel dependen adalah performansi memori jangka pendek yang diukur dengan tes rekognisi kata. Empat puluh (40) subjek dibagi kedalam dua kelompok: kelompok eksperimen yang diberi perlakuan, dan kelompok kontrol yang tidak diberi perlakuan. Mengikuti notasi Shadish dkk (2002, hal. 258) rancangan ini disebut rancangan dasar dan digambarkan sebagai:

\[
\begin{array}{ccc}
R & X & O \\
R & O & O \\
\end{array}
\]

Keterangan: R = penempatan secara acak
X = perlakuan emosi positif
O = pengukuran performansi memori jangka-pendek pasca-perlakuan

Notasi Shadish dkk. (2002) diatas tidak konsisten sebab pada saat menjelaskan notasi rancangan eksperimen-kuasi untuk rancangan dua kelompok nonekuivalen dan hanya dengan pengukuran pasca perlakuan (post test only design with nonequivalent group) dituliskan sebagai berikut;

\[
\begin{array}{ccc}
NR & X & O_1 \\
NR & O_2 \\
\end{array}
\]

Keterangan: X = perlakuan
O_1 = pengukuran pascaperlakuan kelompok eksperimen
O_2 = pengukuran pascaperlakuan kelompok kontrol
NR = nonrandomized assignment= penugasan tidak acak.

Oleh karena itu seandainya mengikuti notasi yang diusulkan dalam tulisan ini maka eksperimen Utomo akan digambarkan sebagai berikut (bandingkan dengan Gambar 2):

\[
\begin{array}{ccc}
R & X & O_1 \\
R & O & O_2 \\
\end{array}
\]

Gambar 7. Rancangan acak dua kelompok independen

Gambar 7 adalah rancangan eksperimen yang melibatkan kelompok eksperimen dan kelompok kontrol namun sebuah eksperimen yang melibatkan dua kelompok independen dapat terdiri dari kelompok eksperimen semua misalnya eksperimen yang meneliti pengaruh sistem latihan menari terhadap keterampilan menari. Di sebuah sanggar tari terdapat 20 siswa tari. Keduapuluh siswa tersebut dengan cara undian dibagi kedalam dua kelompok yaitu kelompok sistem tari.
perbagian dan kelompok sistem tari utuh-menyeluruh. Sistem latihan menari yang mengajarkan bagian per bagian diberikan kepada 10 siswa tari, sedangkan sistem latihan menari yang mengajarkan langsung sebuah tari secara utuh diberikan kepada 10 siswa tari lain. Penelitian seperti ini dilakukan oleh Poerbosari (1995) meskipun tidak persis. Rancangan eksperimen ini melibatkan dua kelompok eksperimen atau tepatnya dua kelompok kondisi perlakuan yang berbeda. Jika variabel independen atau perlakuan, yaitu sistem latihan menari diberi label A, maka kondisi perlakuan sistem menari perbagian dapat diberi label a1 dan kondisi perlakuan sistem latihan menari secara utuh dapat diberi label a2, sehingga sebaiknya rancangan ini dapat digambarkan berikut (Gambar 8).

\[
\begin{array}{c|c|c}
R & X_{a1} & O_1 \\
\hline
R & X_{a2} & O_2 \\
\end{array}
\]

Gambar 8. Rancangan acak dua kelompok independen

Keterangan:

- **R** = penempatan secara acak (*random assignment*)
- **X_{a1}** = sistem latihan menari secara perbagian (kondisi perlakuan pertama)
- **X_{a2}** = sistem latihan menari secara keseluruhan (kondisi perlakuan kedua)
- **O** = pengukuran keterampilan menari

\[
\begin{array}{c|c|c}
MR & X_{a1} & O_1 \\
\hline
MR & X_{a2} & O_2 \\
\end{array}
\]

Gambar 9. Rancangan berdasarkan *matching*

Keterangan: M = *Matching* (Pencocokan berdasar satu variabel bebas lain)

R = Penguasan secara acak.

Rancangan eksperimen yang meneliti satu variabel independen juga dapat dilakukan dengan memakai kelompok majemuk atau lebih dari dua kelompok. Misalnya, penelitian Faesal (1997) mengenai pengaruh jenis kertas brosur terhadap persepsi kualitas komputer. Jenis kertas yang dibuat untuk membuat brosur produk komputer sebagai variabel perlakuan dibagi menjadi tiga kondisi perlakuan, yakni kertas buku (HVS), kertas mengkilap, dan kertas daur ulang. Terdapat 90 mahasiswa yang secara acak dimasukkan kedalam ketiga kondisi perlakuan. Jika

BULUTIN PSIKOLOGI
perlakuan (jenis kertas brosur)! diberi label A, maka kertas buku (HVS) diberi label a1, kertas mengkilap diberi label a2, dan kertas daur ulang diberi label a3.

<table>
<thead>
<tr>
<th>R</th>
<th>Xa1</th>
<th>O1</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Xa2</td>
<td>O2</td>
</tr>
<tr>
<td>R</td>
<td>Xa3</td>
<td>O3</td>
</tr>
</tbody>
</table>

Gambar 10. Rancangan acak kelompok jamak
Ket: R = penempatan secara acak
Xa1 = kelompok dengan kertas buku (HVS)
Xa2 = kelompok dengan kertas mengkilap
Xa3 = kelompok dengan kertas daur ulang
O = pengukuran persepsi kualitas komputer

Rancangan factorial beda-subjek (between-subjects factorial designs) atau rancangan factorial merupakan tipe terakhir rancangan beda-subjek. Rancangan factorial adalah sebuah rancangan eksperimen yang melibatkan manipulasi lebih dari satu variabel independen (Myers & Hansen, 2001). Masing-masing variabel independen atau perlakuan disebut sebagai faktor. Misalnya, Etsem, Walgito, Sugiyanto dan Priyosulistio (2008) menggunakan dua variabel independen yang dimanipulasi, yakni perlakuan pertama/faktor pertama (1) jenis peta Anda Di Sini (peta ADS) dengan kondisi perlakuan: a) menganat prinsip Orientasi Arah Utara dan b) menganat arah subjek, serta perlakuan kedua/faktor kedua (2) rotaasi penempatan peta ADS dengan sudut: (a) 0°, (b) 45°, (c) 90°, (d) 135°, (e) 180°, (f) 225°, (g) 270°, (h) 315°. Jadi dalam penelitian Etsem dkk. (2008) tadi ada dua perlakuan atau faktor: perlakuan pertama (Faktor A) mempunyai dua kondisi perlakuan (a1 dan a2) sedangkan perlakuan kedua (Faktor B) mempunyai 8 (delapan) kondisi perlakuan (b1, b2, b3, b4, b5, b6, b7, dan b8). Variabel dependennya adalah kecepatan pencarian jalan dan ketepatan pencarian jalan.

Penulisan rancangan faktorial eksperimen Etsem dkk. (2008) diatas dapat berbentuk (a) metode pelabelan faktor: 2 x 8 (jenis peta ADS x sudut rotasi) rancangan faktorial antara-subjek atau 2 (jenis peta ADS) x 8 (sudut rotasi) rancangan faktorial antara-subjek atau (b) metode faktor x level: 2 x 8 (jenis Peta ADS: menganat prinsip OAU, menganat arah subjek x Sudut Rotasi: 0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°) rancangan faktorial beda-subjek atau 2 (jenis Peta ADS: menganat prinsip OAU, menganat arah subjek) x 8 (Sudut Rotasi: 0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°) rancangan faktorial beda-subjek. Rancangan factorial beda-subjek dapat digambarkan:

<table>
<thead>
<tr>
<th>R</th>
<th>Xa1b1</th>
<th>O1</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Xa1b2</td>
<td>O2</td>
</tr>
<tr>
<td>R</td>
<td>Xa1b3</td>
<td>O3</td>
</tr>
<tr>
<td>R</td>
<td>Xa2b1</td>
<td>O4</td>
</tr>
<tr>
<td>R</td>
<td>Xa2b2</td>
<td>O5</td>
</tr>
<tr>
<td>R</td>
<td>Xa2b3</td>
<td>O6</td>
</tr>
<tr>
<td>R</td>
<td>Xa3b1</td>
<td>O7</td>
</tr>
<tr>
<td>R</td>
<td>Xa3b2</td>
<td>O8</td>
</tr>
<tr>
<td>R</td>
<td>Xa3b3</td>
<td>O9</td>
</tr>
<tr>
<td>R</td>
<td>Xa1b4</td>
<td>O10</td>
</tr>
<tr>
<td>R</td>
<td>Xa1b5</td>
<td>O11</td>
</tr>
<tr>
<td>R</td>
<td>Xa1b6</td>
<td>O12</td>
</tr>
<tr>
<td>R</td>
<td>Xa1b7</td>
<td>O13</td>
</tr>
<tr>
<td>R</td>
<td>Xa1b8</td>
<td>O14</td>
</tr>
<tr>
<td>R</td>
<td>Xa2b4</td>
<td>O15</td>
</tr>
<tr>
<td>R</td>
<td>Xa2b5</td>
<td>O16</td>
</tr>
</tbody>
</table>

Gambar 11. Rancangan factorial 2 x 8

Rancangan faktorial dapat menghasilkan dua informasi penting, yaitu: (a) informasi mengenai efek utama, yaitu efek masing-masing variabel independen terhadap variabel dependen, dan (b) informasi
mengenai efek interaksi. Jika terjadi interaksi maka efek satu variabel independen akan berubah tergantung pada level variabel independen lain. Misal, sebuah eksperimen pengaruh sistem latihan menari (sistem perbagian, a1 dan sistem keseluruhan, a2) dan tingkat kesulitan tari (mudah, b1 dan sulit, b2) terhadap keterampilan menari (skor 0-10). Pada gambar 12A, keterampilan menari dengan metode keseluruhan selalu lebih rendah dibandingkan dengan metode perbagian apapun taraf kesulitan tarinya. Demikian pula, keterampilan menari dengan tingkat kesulitan tari mudah selalu lebih tinggi daripada kalau tingkatnya sulit tidak peduli bagaimana sistem latihan menarninya. Sebaliknya, pada gambar 12B pengaruh sistem latihan menari akan tergantung tingkat kesulitan tarinya. Metode latihan per bagian akan menghasilkan keterampilan menari lebih rendah dibanding sistem latihan keseluruhan jika tingkat kesulitan menarninya mudah, namun keterampilan menari akan lebih baik dengan metode latihan per bagian daripada metode latihan keseluruhan jika taraf kesulitan tari sulit. Tidak bisa disimpulkan bahwa metode menari per bagian akan selalu lebih bagus menghasilkan keterampilan menari dibandingkan metode latihan keseluruhan. Jawabannya akan tergantung pada level variabel independen lain yaitu level variabel tingkat kesulitan tari.

Gambar 12A. Tidak ada interaksi antara sistem latihan tari dengan tingkat kesulitan tari

Gambar 12B. Terdapat interaksi antara sistem latihan tari dengan tingkat kesulitan tari

Rancangan sama subjek (within-subject design)

Penelitian dengan rancangan sama-subjek yang dilakukan Nadira untuk ke 25 subjek dapat digambarkan seperti berikut:

\[
\begin{align*}
R_{\text{Xa}} & \text{ OX}_{\text{Xa}} \text{ OX} & \text{(untuk ke 25 subjek)} \\
R_{\text{Xa}} & \text{ OX}_{\text{Xa}} \text{ OX} & \text{(untuk 12 subjek)} \\
R_{\text{Xa}} & \text{ OX}_{\text{Xa}} \text{ OX} & \text{(untuk 13 subjek)} \\
\end{align*}
\]

Gambar 13. Rancangan sama-subjek dengan counterbalancing

Rancangan sama-subjek dapat dilakukan secara faktorial, yaitu melibatkan lebih dari satu variabel independen. Misalnya, penelitian fiktif mengenai pengaruh jenis kemasan shampo dan volume terhadap minat membeli diteliti. Jenis kemasan shampo dibedakan kedalam tiga level, menjadi kemasan botol kaca, kemasan botol plastik dan kemasan sachet serta volume shampo yang dibedakan kedalam dua level, yakni 50 ml dan 100 ml. Subjek penelitian adalah 40 mahasiswa psikologi Universitas ABC dan setiap mahasiswa mendapatkan ketiga jenis kemasan serta dua volume tadi. Rancangan ini melibatkan 6 kombinasi iklan shampo: (1) Subjek melihat iklan shampo kemasan botol dengan volume 50 ml, lalu diminta mengisi skala minat membeli shampo; 2) Subjek melihat iklan shampo kemasan plastik dengan kemasan 50 ml dan diminta mengisi skala minat membeli; 3) Subjek melihat iklan shampo kemasan sachet dengan volume 50 ml dan diminta mengisi skala minat membeli; 4) Subjek melihat iklan shampo kemasan botol dengan volume 100 ml, lalu diminta mengisi skala minat membeli shampo; 2) Subjek melihat iklan shampo kemasan plastik dengan kemasan 100 ml dan diminta mengisi skala
minat membeli; 3) Subjek melihat iklan shampoo kemasan sachet dengan volume 100 ml dan diminta mengisi skala minat membeli. Dalam penelitian ini ada dua faktor, yaitu faktor pertama (A) mempunyai tiga level (a1, a2, dan a3) dan faktor kedua (B) mempunyai dua level (b1 dan b2) sehingga ada rancangan 3×2 faktorial sama-subjek. Setiap subjek akan mendapatkan $3 \times 2 = 6$ kondisi perlakuan yang berbeda. Setiap subjek akan melihat iklan shampoo dalam 3 jenis kemasan yang isinya baik 50 ml dan 100 ml.

Rancangan faktorial sama-subjek (3×2) dapat digambarkan sebagai berikut:

R Xa1b O; Xa1b O; Xa2b O; Xa2b O; Xa3b O; Xa3b O.

Gambar 14. Rancangan faktorial sama-subjek

Rancangan faktorial sama subjek juga perlu di counterbalancing sehingga gambar 14 dapat menjadi beberapa variasi kombinasi kondisi perlakuan, misalnya dengan partial counterbalancing yang memilih tiga kombinasi secara acak dari kemungkinan kombinasi urutan kondisi perlakuan kepada 40 subjek dapat menjadi (lihat Gambar 15).

R Xa1b O; Xa1b O; Xa2b O; Xa2b O; Xa3b O; Xa3b O.

Gambar 15. Rancangan same-subyek faktorial yang di partial counterbalancing

Rancangan Campuran (Mixed Designs)

Myers dan Hansen (2001) merumuskan rancangan campuran mengkombinasikan satu faktor yang dimanipulasi dalam rancangan sama-subjek dengan faktor lain yang berbentuk rancangan beda-subjek. Misalnya, sebuah eksperimen meneliti pengaruh tingkat suhu ruang kerja dan kebisingan ruang kerja perakit sepeda motor terhadap produktivitas kerja. Tingkat suhu ruangan (Faktor A) dimunculkan $10^\circ C$ (a1) dan $25^\circ C$ (a2), sementara itu kebisingan kerja (Faktor B) dibuat variasi 10 db (b1), 30 db (b2), dan 60 db (b3). Untuk variabel tingkat suhu dilakukan rancangan beda-subjek, jadi subjek yang mendapatkan $10^\circ C$ (a1) berbeda dengan subjek yang mendapatkan $25^\circ C$ (a2). Sedangkan untuk variabel kebisingan dilakukan dengan rancangan sama-subjek, jadi subjek yang mendapatkan 10 db (b1), 30 db (b2), dan 60 db (b3) adalah sama orangnya. Gambaran eksperimen tergambar dalam Tabel 1.

Rancangan Tabel 1 dapat digambarkan sebagai berikut:

R Xa1b O; Xa1b O; Xa1b O; Xa2b O; Xa3b O; Xa3b O.

Gambar 16. Rancangan campuran

Dalam rancangan campuran, maka hanya faktor sama subjek (within-subject) saja yang dicounterbalanced (Myers & Hansen, 2002, hlm. 288) sehingga dalam eksperimen diatas maka hanya faktor kebisingan saja (10 db, 20 db dan 60 db) atau faktor B (b1, b2 dan b3) yang di counterbalanced. Ada duabelas kemungkinan kombinasi yang mungkin terjadi maka jika dengan partial counterbalanced terpilih enam kombinasi secara acak, gambar rancangan akan sebagai berikut (gambar 17) untuk delapan orang setiap kombinasi kondisi perlakuan.
Tabel 1
Gambaran eksperimen

<table>
<thead>
<tr>
<th></th>
<th>a1 = 10°C</th>
<th></th>
<th>a2 = 25°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>b1 = 10 db</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Eva</td>
<td>17.Quinci</td>
<td>5.Cius</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>B = KEBISINGAN</th>
<th>b2 = 20 db</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td>Eva</td>
<td>17.Quinci</td>
<td>5.Cius</td>
<td>17.Opung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>b3 = 60 db</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td>Eva</td>
<td>17.Quinci</td>
<td>5.Cius</td>
</tr>
</tbody>
</table>
Soal berapa banyak subjek dalam setiap kondisi perlakuan, silakan mengkaji penelitian terdahulu sebagai panduan. Sebagai patokan umum, disarankan sekurang-kurangnya ada 15 atau 20 subjek disetiap kelompok (Myers & Hansen, 2002, h.217).

Penutup

Rancangan eksperimen adalah struktur umum sebuah eksperimen yang ditentukan oleh tiga aspek (a) jumlah variabel independen atau perlakuan, (b) jumlah variasi variabel independen atau kondisi perlakuan, dan (c) penggunaan subjek yang sama atau berbeda untuk masing-masing kondisi perlakuan. Tidak semua buku metode eksperimen menuliskan notasi rancangan eksperimen acak. Penulis mengusulkan notasi eksperimen acak untuk keperluan pedagogis dengan mencampurkan notasi Kirk (1982) dan Shadish, Cook & Campbell (2002) dengan modifikasi.

Daftar Pustaka

